
Proposal for a bookchapter

Grid Workflow - An Integrated Approach

Gregor von Laszewski1,2,∗ and Mike Hategan2,1

1Argonne National Laboratory, Argonne National Laboratory,

9700 S. Cass Ave., Argonne, IL 60440

2University of Chicago, Computation Institute, Research Institutes Building #402,

5640 South Ellis Avenue, Chicago, IL 60637-1433

*Corresponding author: gregor@mcs.anl.gov

Abstract

Many scientific simulations and experiments require the coordination
of numerous tasks posed by interdisciplinary research teams. Grids can
provide access to the necessary high-end resources to conduct such tasks.
The complex tasks and their interactions must be supported through con-
venient tools that protect the scientist from provisioning, and accessing
such resources. To address this issue, we introduce a number of Grid
abstractions that make the development of Grid middleware independent
tools possible and allow for the integration of a number of commodity
tools. Our vision is implemented through an integrated approach based
on a layered architecture that attempts to bridge the gap between Grid
middleware and scientific applications. Our abstractions include special-
ized services, a Grid workflow engine and language, and Grid faces which
are graphical abstractions that can be employed in science portals and
standalone applications.

1 Introduction

Grid computing has become a valuable asset in scientific and business com-
munities for integrating distributed resources as part of virtual organizations.
An important factor for the success of Grids is the development of sophisti-
cated middleware based on standards. We have seen over the years a shift from
API-oriented middleware to service oriented middleware. However, scientists
that develop applications require an even higher level of abstraction in order
to enable rapid prototyping and reuse of the Grid infrastructure in an easy
fashion. Many scientific applications can benefit from expressing their tasks
as part of a workflow. Due to the complexity of the Grid infrastructure and
its evolving standards, it is even more important that much of this complexity
be hidden from the end user. Sophisticated workflow frameworks can provide
the necessary abstraction making the use of Grids even for scientists with little
knowledge about Grids possible. Being able to express the scientific task of

1

discovery as structured workflows will have the added benefit that experiments
can be described and documented in a concise way enabling for example support
for experiment replication.

The chapter is organized as follows. First, we focus on the definition of
workflow and identify some specific issues that are unique to Grid workflows
and their workflow management systems. We present in more detail our archi-
tecture that addresses some of the workflow management issues and provide an
implementation that is part of the Java CoG Kit. We list its unique features
and demonstrate through simple language features that it enhances significantly
the Grid experience. After we present more details about the status of our im-
plementation, we conclude our chapter by identifying future research.

2 Workflow

Different definitions of workflow can be found in literature. However, the most
widely accepted definition can be found in [21]. We quote

Workflow is concerned with the automation of procedures where doc-
uments, information or tasks are passed between participants accord-
ing to a defined set of rules to achieve, or contribute to, an overall
business goal. Whilst workflow may be manually organized, in prac-
tice most workflow is normally organized within the context of an IT
system to provide computerized support for the procedural automa-
tion ...

This leads to the following simple definition of a workflow:

The computerized facilitation or automation of a business process,
in whole or part.

In order to execute such a workflow we are in the need of a workflow man-
agement system. According to [21] it is defined as follows

A system that completely defines, manages and executes “workflows”
through the execution whose order of execution is driven by a com-
puter representation of the workflow logic.

If we are in the business of doing science or working on the Grid, the same
definitions apply to Grid workflows. The question arises is there anything dif-
ferent between business and science workflows? If we carefully examine the
definitions given in [21], we discover a great deal of overlap. This includes for
example, the need of a large number of resources in space and time. We find
that the real difference is in (a) integrating Grid middleware into the workflow
management system, and (b) focusing on the definition of workflow models that
target use cases utilizing the Grid infrastructure.

Focusing on the Grid aspect, we can now define a Grid Workflow more
formally. We refer to a Grid workflow as a concept that helps assisting the in-
stantiation of a workflow model into an existing Grid infrastructure. In analogy

2

to the formalism common in computer science [12], it is simply defined as a set
of Grid resources and services, a quality expectation defined by the user(s) and
a workflow model acting on them. More formally,

Wi = (Gr,Gs,Qu,Wm)

where
Wi = Workflow instantiation,
Gr = Grid resources,
Gs = Grid services,
Qu = Quality expectations from the user,
and a
Wm = Workflow model.

In the literature Wi is also sometimes referred to as concrete [13] or exe-
cutable workflow [10], and Wm as abstract workflow that is concretized as part
of an instantiation.

2.1 Issues in Grid Workflow

To focus on a more practical side of Grid workflows, we analyze which issues
we must deal with to integrate Grids. To assist in this quest, we have listed
a selected set of important issues in Figure 1that are related to Grid workflow
management.

As part of the taxonomy depicted in Figure 1 we need to distinguish between
the environment that a Grid workflow managing system targets and the lifecycle
of a workflow. Within this chapter we will only target management issues that
are typical for scientific and Grid workflow management issues. Hence, we need
to deal with build, process, task, discovery, and project management issues that
are related to the scientific discovery process. Additionally, we need to deal with
concepts that are exposed as part of the Grid middleware and address issues such
as virtualization, security, resource, data and information management. Each of
these management issues poses further issues that are discussed in more detail
in [20, 18].

The lifecycle of a Grid workflow consists of defining a workflow model based
on a description methodology such as workflow languages or schemas. The
definition of a workflow is done under extensive planning while considering ser-
vices, resources, and quality assessments as discussed earlier. Checkpointing a
workflow is of utmost importance as some workflows may run for month at a
time. This poses special care on deployment strategies and adaptive software
as the underlying services may change during runtime. Monitoring the work-
flow is important and must be made available through sophisticated interfaces
to satisfy the novice and expert users. Lastly, it is crucial that the workflow
adapts to ad-hoc that occur in the underlying Grid infrastructure or as part
of the experiment process. Next we will discuss in more detail how workflows
can support the scientific application management, as well as the integration of
Grid application management issues.

3

Workflow

Environment

Business

Science

Process/Task Management

Component Management

Build Management

Discovery Management

Project Management

Knowledge Management

...

Grid

Security Management

Resource Management

Data Management

Information Management

Deployment Management

Virtualization Management

...

Lifecycle

Modeling
Planing

Defining
Schema

LanguageInstantiating

Checkpointing

Monitoring

Adapting

Figure 1: Workflows for Grids must address management issues posed by scien-
tific and Grid applications

4

2.2 Science Application Management

In scientific applications we deal with management issues that support the sci-
entific discovery process. Workflow abstractions build ideal tools to support
the management of scientific applications. We have listed a set of management
issues with increasing complexity and reuse of the previous management issues
within.

Process and Task Management is an essential part of the scientific work-
flow. It allows the formulation of processes and tasks in order to define
tangible items to be executed as part of a large and complex scientific
discovery process.

Component Management involves the definition of components that imple-
ment strategies to execute processes and tasks and include them for ex-
ample as part of a sharable repository within the scientific community in
a community accepted component standard.

Build Management deals with bootstrapping and generation of software for
later execution. Issues such as heterogeneous infrastructure and optimiza-
tion of codes are of importance.

Discovery Management deals with issues related to the lifecycle of scientific
experiment or task that may lead to scientific discovery.

Project Management deals with aspects that are outside of a single discovery
or experiment process but deal with the management of a large number
of them.

Knowledge Management comprises of gathering and dissemination of knowl-
edge that is a direct result of a scientific activity. This may include the
development of knowledge and data mining tools and associated portals
[11] to integrate other members of the community.

2.3 Grid Application Management Issues

To employ the Grid appropriately as part of a workflow management system, it
is important to address the following management issues.

Version and Deployment Management is important as we may deal with
long running applications that are not effected by a change in the infras-
tructure that may happen during the workflow lifecycle.

Security Management deals with all aspects of enabling security such as
single-sign-on, encryption, and data security. Special roles within a scien-
tific discovery process may be assigned and the workflow may be assembled
and monitored differently based on policies and privileges.

Resource Management deals with the integration of Grid resources and ser-
vices that are part of a workflow instantiation.

5

Data Management deals with the data that may be generated during the
instantiation of a workflow.

Information Management deals with information that will help the work-
flows to be dynamic with in respect to the available infrastructure and
model.

Virtualization Management deals with the details of displaying and mon-
itoring potentially disparate workflows as part of a large scale workflow
management system.

2.4 Lifecycle Management

Each workflow management system must deal with the lifecycle of the workflow
which includes the definition through workflow schemas or languages and the
planning as part of the modeling effort. Workflows must be instantiated in
order to properly assign and adjust resource requirements. Checkpointing and
monitoring are of special importance to deal with and display fault situations.

3 Evolution of Grid Workflow

The development of Grid workflow systems is a natural progression as part of
a combination of interwoven factors between available hardware, software, and
scientific and business applications. Most recently we observe the emergence
of Web and Grid technologies that together provide a path towards research
activities in workflow. This path is marked by a number of phases.

Pre Web Phase. As part of this progress the desire to automate processes
has lead to the development of early office automation software in the seventies
to mid eighties leading to business of the mid eighties, and scientific workflow
management systems of the late eighties. This view is shared with [22] in which
a detailed historical perspective of this early development of workflow manage-
ment systems is given and arranges the systems in chronological order.

Pre Grid Phase. Prior to the popularization of the term Grid, a variety of
systems were used to define scientific workflows. Examples include HenCE[8] to
define parallel programs visually, SciRUN [?] using a component based approach
similar to that of AVS, a precurser to the Java CoG Kit that focuses on the
aspects of Grid like workflow systems [17], and Webflow [?] to name only a view.

Early Grid Phase. Originally, only view Grid based systems dealt with work-
flows were available. The earliest of these systems was called GECCO and has
now evolved to the Java CoG Kit [17]. Some time after that UNICORE [15]
and Condor Dagman [6, 2] have been designed. Systems such as SciRUN have
been augmented to include Grid scheduling facilities.

Grid Standrads Phases. Most recently the Grid community went through
several phases to define Grid standards. The latest phase is still in progress and
several standards have been submitted to OASIS. Hence the definition of Grid
workflows based on the evolving standards was difficult. As part of this evolu-
tion, it was observed that higher level of abstractions can provide a convenient

6

interface to workflows for scientific calculations. Such a high level abstraction is
defined for example by the Java CoG Kit not only on the workflow specification
level, but also on the interface and API level. Also other systems such as Condor
or Chimera have introduced language level abstractions that make it technically
possible to adapt to the evolving standards as has been demonstrated through
the last two years.

Web Services and Grid Phase. In the late 1990s with the maturing of Web
Service standards a renewed interest in workflow arose to develop standards for
interoperable web services including the concepts of coordination and choreog-
raphy. In addition, the introduction of the Web Services Resource Framework
and its associated standards has resulted in technologies developed by the Grid
community that come closer to the Web services community. It is obvious that
a large amount of overlap between both communities exists and that several
technologies contributed by both groups enhance each other. Due to the fact
of evolving standards not only in the Grid community, but also in the Web
services community it is still difficult to develop technologies of lasting impact
with wide acceptance that combine the three technologies: Grids, Web services
and workflows. To illustrate the evolving standards let us focus on Figure 2 in
which we have listed just a small number of relevant standards in relationship
to web services and workflows. We observe that even in a matter of only three
years a number of efforts have started, but that through merging the number
has actually become smaller. Today, efforts such as BPEL4WS and WS-CDL
have a strong momentum. Due to the evolution of the Grid standards efforts
such as GSFL [19] that were designed prior to BEPL and WS-CDL have been
halted. We expect that shortly other efforts in the Grid community will be
initiated as is evident by the creation of workflow related research groups in the
Global Grid Forum and the participation of companies in the GGF with vast
interests to make Web services based workflow standards a success.

Grid and Web Upperware. Although it will be necessary to develop stan-
dards and methodologies to integrate current and future Grid middleware into
a workflow strategy, it is important to recognize that the development of mid-
dleware reaches an increased level of sophistication through the development
of advanced concepts and services. Such concepts have actually been demon-
strated already by the previously mentioned systems such as the Java CoG Kit,
Condor, and others while hiding as much of the underlying Grid middleware as
possible in services and solutions that we term Grid Upperware. Systems such
as the Java CoG Kit show that it is possible to develop upperware that can
utilize different implementations of the Grid middleware as part of the work-
flow. This is of especial importance as we need to consider that the underlying
middleware can be changing during the course of a long running workflow. More
to this issue is discussed in a later section.

7

XLANG

BPEL4WS

BPMLBPEL4WS 1.1

WSCL

WSCI

WS-CDL

WSFL XPDL

BEPL4WS 2.0

˜

Specification Introduced Deprecated by
XLANG Jun. 2001 BPEL4WS
WSCL Mar. 2002
WSCI Aug. 2002 WS-CDL
WSFL Aug. 2002 BPEL
XPDL Nov. 2002
BPML Nov. 2002
BPEL4WS 1.0 Jul. 2002 BPEL4WS 1.1
BPEL4WS 1.1 May 2003
BEPL4WS 2.0 (draft) Feb. 2005
WS-CDL (draft) May 2005

Figure 2: Evolution of the standard in relationship to selected key web related
technologies

4 Overview of Selected Grid Workflow Management Sys-
tems

A number of research groups have worked on the creation of workflow systems for
Grid and non Grid environments. We will enumerate a subset of these systems
in order to highlight features that have been found useful by the community.
The systems we look at are Condor DAGMan, Globus, Pegasus and Chimera,
Unicore, Triana. In more detail we will look at the Java CoG Kit workflow as
it projects an integrated approach to Grid workflow fulfilling requirements of
many users.

4.1 Condor DAGMan

DAGMan (Directed Acyclic Graph Manager) [2] is a recent addition to the Con-
dor [3, 14] software. It is a meta-scheduler that extends the condor scheduler
by allowing dependencies between condor jobs. The representation of depen-
dencies is specified as part of a direct acyclic graph, where the nodes represent
programs and the edges dependencies between the programs. The DAG is de-
scribed in a simple text file in which each node represents a condor job that
takes a number of input files and produces a number of output files. Besides
specifying dependencies, DAGMan can support elementary error recovery and
reporting. In each node a user can define a pre and a post script that is to
be run prior and posterior to the condor job execution. Other frameworks use
simply a separate graph node for this separation. DAGMan and Condor are im-
plemented in C. A Grid Services interface based on the GT4 standard is under
development. Condor is not open source and extensions to this framework are
therefore not possible by the general user community. The advantage of the sys-
tem is the ease of specification of DAGs as ASCII files, the integration with the
well known Condor software. The disadvantages are that no XML specification

8

language is available, the system is closed source, and that it is more difficult to
integrate your own customized schedulers and Grid mapping frameworks. No
Graphical user interface is provided. Condor is well suited to interface to Grid
backends.

4.2 Globus Toolkit

Globus is a Grid middleware toolkit that has evolved significantly during its
presence within the community. It started with an API layer to support Meta-
computing and has now been totally redesigned to project a Service oriented
model for Grid computing. Concepts such as the Grid security infrastructure
that allow delegation of jobs to be part within a production Grid or the intro-
duction of state full services in contrast to stateless Web services are innovations
that are being standardized by the Global Grid Forum in conjunction with ef-
forts at IETF and OASIS. The Globus toolkit does not support workflows as
pioneered by the Java CoG Kit within the Grid domain. However the newest
Globus toolkit (version 4) uses a file stag-in and stage-out pattern and is now
integrated part of the job execution service (called GRAM) distributed with the
toolkit. Hence it provides high level features similar to that of a single Con-
dor DAGMan node. In addition, it provides simple reliability features of the
stage-in and stage-out process. Due to this similarity it is relatively straight
forward for DAGMan to integrate Globus Toolkit Grid services as part of the
backend infrastructure and the other way round. The advantage of the Globus
Toolkit is that it projects the quasi standard of Grid middleware and that a
large number of projects base their development on the services included within
the Globus Toolkit. The disadvantage is that the Globus Toolkit has undergone
three phases of development with technically very different service implemen-
tations. However, based on the newest development and the promotion of the
protocols through standard bodies the system will become less prone to sig-
nificant changes. In addition, Toolkits such as the Java CoG Kit have proven
an interesting approach to provide a set of consistent service descriptions even
though the underlying services and their protocols change significantly.

4.3 Pegasus and Chimera

Chimera [5] and Pegasus [4, 13] are systems that work hand in hand to define a
workflow model and to instantiate it within a Grid environment. The workflow
model is centered on the concept of virtual data which specifies data as part of a
number of transforms. Hence, the input to chimera can be expressed as partial
workflow descriptions that specify input files on which logical transformations
are applied, leading to output files. Instead of referring to an output file the
workflow designer can refer to the partial workflow that creates this output
file. This is a concept is especial useful if the operations to obtain the modified
data are cheaper than maintaining a new copy of the data. The specifications
of the transformations are defined with the help of a virtual data language.
Chimera is associated with tools and methods to define the virtual data workflow
models and Pegasus is responsible for instantiating the workflows within a Grid
environment. Pegasus supports the mapping of partial workflows into the Grid

9

environment to allow late binding of the resources in order to adapt to the
changing Grid environment during the workflow instantiation and execution.
The advantage is that transformations may be cheaper than the storing of the
result of transformations. The disadvantage is that the system to express such
transformations can become quite complex and that intermediary data may not
be available at a time it may be needed by other components.

4.4 Unicore

UNICORE (Uniform Interface to Computing Resources) [15, 16] is providing a
seamless, secure, and intuitive access to distributed resources. It deals with job
management including creation, submission, and monitoring, data management,
application support, and single sign-on. It integrates resources as part of a meta
computing environment. A graphical user interface is available through which
the user can specify with the programs to be executed on compute resources.
As part of the UNICORE abstract job model DAG-based workflows can be
specified In addition it contains conditionals and repetitive execution of job
groups or tasks as part of the workflow model. The advantage of the system is
that it is easy to define workflows to generate programs that work on remote
machines. The disadvantage is that it is that the integration with the newest
Grid standards is in progress.

4.5 Triana

Triana presents itself as a problem solving environment integrating a visual in-
terface with data analysis tools. Triana workflows are based on the notion that
every piece of work is part of a specific experiment and its execution needs to
be coordinated as part of a workflow. Experiments are generated by a scientist,
which is supported by a Triana workflow management system to handle the ex-
periments as efficiently and effectively as possible. As other workflow systems,
Triana is based on a layered architecture that separates the visualization and
representation from the instantiation of the workflow. Triana workflows are
WSFL like representation of task graphs task graph consist of three types of
elements: tasks, control links and data links, where a task represents an opera-
tion, a control link defines the sequence of tasks in the model, and a data link
describes the flow of data between tasks. Triana is a arge software and contains
a sophisticated visualization framework for workflow graphs. The advantage
of Triana is the visualization framework, which makes it possible to maintain
moderately sized workflows in graphical fashion. The disadvantage is that the
use may not as targeted to the Grid as other efforts such as Condor or Java
CoG Kit.

4.6 SCIRUN

SCIRUN is a scientific workbench that focuses on the presentation of compo-
nents and their integration as part of a graphical user interface similar to AVS.
It allows users to construct, manage, and debug scientific simulations in a va-
riety of scientific disciplines. In SCIRUN components are defined that can be
connected with each other through the description of input and output relation-

10

ships of the components. The assembly of such component can be viewed as a
workflow since SCIRUN allows for parallel and conditional execution of tasks.
SCIRUN has components integrated that allow running of the computational
intense tasks on the Grid. Besides integration in Grids distributed computing
frameworks such as CORBA are also supported. It includes a sophisticated GUI
workflow modeler as well as controls to modify a workflow while it is running.
The advantage of SCIRUN is its component model and the ability to generate
sophisticated visualization of scientific data. The disadvantage is that the user
obtains the power of SCIRUN through its user interface.

5 Java CoG Kit Workflow

To support a high level workflow vision as introduced in Section 2.1 we have
chosen to adapt an incremental approach based on feedback from our users.
Through our interactions we have identified that many application developers
desire to program the Grid in familiar higher level frameworks that allow rapid
prototyping. The Java CoG Kit provides such rapid prototyping abilities as
part of the Java and XML frameworks. It integrates a variety of commodity
tools, protocols, approaches, methodologies, while accessing the Grid through
Grid toolkits. The Java CoG Kit has evolved from a project that exposes much
of the Globus Toolkit functionality through Java to a framework that contains
a significant feature enhancement to the Globus Toolkit architecture. Based
on its features, it is used by, and distributed in part with the Globus Toolkit
version 3 and version 4. Often, users of CoG Kit technologies do not know that
they are using them.

5.1 Features

In order to support our vision of integration workflows management tools into
the Java CoG Kit, we have identified a number of higher level abstractions
including Grid tasks, transfers, jobs, queues, hierarchical graphs, schedulers,
and workflows, and control flows, which make the development of Grid programs
easier. However, in contrast to other Grid efforts we have provided a mechanism
in our workflow management framework that allows the integration of a variety
of Grid and commodity middleware in an easy-to-comprehend framework based
on the concepts of protocol independent abstractions, providers, and bindings.
These are discussed below.

Providers. We have introduced the concept of Grid providers that allow dif-
ferent Grid middleware to be used as a part of an instantiation of the Grid
abstractions. Hence the programmer does not have to worry about the
particularities of the Grid middleware. Through dynamic class loading we
have the ability to do late binding against an existing production Grid.
This includes the implementation of the Grid (task) abstractions, version
binding against existing Grid Toolkits, and resource binding.

Abstractions. We have identified a number of useful abstractions that help
in the development of elementary Grid applications. These abstractions
include job executions, file transfers, workflow abstractions, job queues

11

and can be used by higher level abstractions for rapid prototyping. As the
Java CoG Kit is extensible users can include their own abstractions and
enhance the functionality of the Java CoG Kit.

Bindings. Through these concepts the Java CoG Kit protects your develop-
ment investments by protecting you from changes to the Grid middleware.

Based on these elementary concepts, we designed a layered architecture that
allows the gradual enhancement of workflow capabilities within our application
(see Figure 3).

GT2

CoG Kit Abstraction Layer

CoG

GT3.02

CoG

GT4
WS-RF

CoG

Applications

Data and Task
Management Layer

Gridfaces Layer

SSH

CoG

Nano
materials

Bio-
Informatics

Disaster
Management Portals

GT3.02

CoG

GT3.02

CoG

CoG

local

CoG

WebDAV

CoGCoG Kit providers

Workflow
Abstractions

Workflow
Abstractions

Karajan

Workflow
Vizualizer/Editor

Workflow
Portlet

Queue/Set
Abstractions

GridAnt
Workflow
Frameworks

Workflow
Design &
Monitoring

Workflow
Applications

Grid Middleware &
Commodity
Technologies

Figure 3: The layered approach of the Java CoG Kit provides mechanisms for
incrementally enhancing workflow management components.

On the bottom of the architecture we have the typical Grid middleware.
Above it lies our Java CoG Kit abstraction layer that focuses on job submission
file transfer and authentication. With the help of CoG providers, we can now
access a number of different Grid middleware. One may ask, why bother, why
not stick to one Grid middleware? Practical experience shows that the vision of
one middleware can only be achieved if everyone agrees to the same protocols
and standards. However, this has in the past been an issue of content, as (a)
either the standard evolves (b) the middleware evolves (c) or the production
Grids had incompatible software versions installed. Due to our advanced ar-
chitecture, we can address the issues by developing appropriate providers. As

12

we will see in the later part of the chapter, this will allow us even to enable
switching between different Grid middleware in a running workflow.

The simplest form of workflow abstractions that we support are embedded
in the definition of a task. This may include a file transfer, a job submission,
an authentication or any other task that has to be done. Our tasks are defined
to have a status that can be queried. Based on this elementary definition, we
define task queues and sets.

On the next higher level, we define APIs, tools, and services that help in
the coordination of such tasks. It is handled by a workflow engine that we
have derived from GridAnt. However, the scalability of GridAnt was limited.
Hence, we designed a complete new workflow engine with many more advanced
language features. This workflow engine is also called Java CoG Kit workflow
Karajan engine.

At the next level, we define Gridfaces that are visual abstractions shared
amongst stand-alone applications or portals. With the help of Gridfaces, it will
become easy to develop visuals for either portals or stand-alone applications.

The value of the Java CoG Kit workflow solution lies in its simplicity and
its ability to be integrated in a solution that allows us to expose workflow to
a variety of users. As indicated in Figure 4, we are prototyping a system that
provides an API based on abstractions and the integration of services. Com-
mand line interfaces, web portals, and a Grid Desktop that expose the workflow
functionality in a convenient user interface are also under development. The
integration of these tools is possible through an integrated but modular archi-
tecture as depicted in Figure 5. Our workflow system contains at its heart the
workflow engine that is augmented by a variety of tools, our workflow specifica-
tion languages, and programing frameworks to reuse workflows and the engine.
It is important to note that the workflow engine is itself an abstraction and
could for example be replaced by a specialized version suitable and customized
for a particular community.

In the rest of the chapter, we illustrate a number of important features of
the Java CoG Kit workflow to highlight some of its capabilities.

5.2 Language

The Java CoG Kit workflow engine is based on a language that is derived from
ant and GridAnt. We have integrated flow control constructs such as condition,
loops, as well as, sequential, parallel blocks. Figure 6 shows a subset of the
workflow patterns that are supported within the Java CoG Kit workflow engine.
It is important to note that we also have the ability to define the pattern of
hierarchical tasks as indicated in Figure 7.

Specialized grid enabled tasks for job submission file transfer and authenti-
cation are available that can be augmented with appropriate providers.

5.3 Workflow Gridfaces

An important aspect of a workflow system to appeal to the scientific user com-
munity is to provide elementary capabilities for visualizing the workflow and
its status. We have developed a prototype visualization tool that can render a

13

Increased exposed Functionality

In
cr

ea
se

d
ex

po
se

d
U

sa
bi

lit
y

Java CoG Kit

Standalone
Applications

Desktop

Web Portals

Command line
tools

Abstractions

APIs
Services

Figure 4: The Java CoG Kit integrates several mechanisms that together build
a powerful workflow management system for Grids.

graph based on the task model (Figure 8). To be able to render large graphs
we have introduced two capabilities. First, we are developing a capability to
render graph nodes that can themselves be graphs. Secondly, we enable a graph
overview window and allow zooming into portion of that graph. As each node
can be annotated with a label it is possible to provide convenient help descrip-
tions for the user through an annotation. The workflow display component is
also contains functionality to control and monitor the workflow. Once the user
presses the start button, he will be able to monitor the progress of the graph.
It is possible to set breakpoints in the graph that is, the workflow gets executed
only till right before the task that is to be executed. Hence, it is possible to
support debugging as well as tasks in the graph that require interactive steering
and can not be automated. In addition to our graph vizualizer, we have de-
veloped a workflow debugger, that allows us to step through the workflow and
observe the variables associated with it (9). This debugger has also the ability
to utilize breakpoints so the workflow designer can focus on the tasks that may
need further inspection.

6 Workflow Language

In this section, we present a subset of simple examples that illustrate the syntax
of our XML based workflow language. It is easy to derive other more convenient
representations as discussed in Section 7. However, we have decided to present

14

Instantiation and Execution

ProgrammingSpecificationTools

Workflow XML

Command line
tools

Workflow
Abstractions

Workflow
Services

Workflow
Engine

Grid

Editor

Monitor

Debugger

Simple Workflow
Language

Workflow
APIs

Workflow
PortletsTranslators

Figure 5: Components of the Java CoG Kit workflow framework

our features in XML to demonstrate the similarity to the originating GridAnt
system. To keep the examples short we use “... to indicate a block of statements
that is not shown but are essential to the illustration of a language feature.

6.1 Modularization

Here, we describe the functions that allow us to modularize our workflows.

Project. We have introduced the concept of named projects as introduced in
GridAnt. This allows us to refer to different workflow projects by name.
<project name="cog"> ... </project>

Element. One of the most important features of our workflow language is
the element tag that allows the definition of new elements into the language.
Elements have a name and a number of parameters. Once defined, the element
can be reused under its name in the program code. Assume we define the
following element.
<element name="printParameters"

arguments="input,output">
<echo message="Input = {input}"/>
<echo message="Output = {input}"/>

</element>

Once it is defined, it can be invoked in the following way.
<printParameters input="in.dat" output="output.dat">

15

A

B

C

A B C B C

D

A

A

i0..n

A

true

A

b

A

var

op

a

b

c

i) ii) iii) iv)

v) vi) vii) viii)

Figure 6: Selected workflow patterns that are supported by the Java CoG Kit. i)
sequence ii) parallelism iii) fork iv) variables v) for loop vi) choice viii) operators

Namespaces. Through the use of namespaces the definition of elements can
be augmented automatically with a prefix. This can be of special importance
if multiple workflow developers have provided elements with the same name.
Therefore, it allows an easy way of distinction. Assume we define the following
namespace
<namespace prefix="gregor"> ... </namespace>

Then, each element that is defined in the block is preceded by the prefix
“gregor:”.

Include. To structure element definitions and other Java CoG Kit workflow
scripts it is possible to organize them in separate files similar to the C include
statement. Such files can be included in a workflow as follows:
<include name="cogkit.xml">

Descriptions and Annotations. Each element can be augmented with an
annotation and description which is useful to provide metadata for the element.
The description should usually include a more detailed textual explanation of
what this element is for. The annotation is typically used in visualization tools
and may include a label for the element that is supposed to be displayed by
such tools. Annotations and descriptions can be changed during the course of
a workflow instantiation.

16

<element name="element" annotation="label"
description="Demonstrating annotations"/>

6.2 Variables and Operators

Variables and operators can be used to make the workflow dynamic.

Variables. We have introduced an untyped variable. Similar to python, the
value is interpreted in its context.
<set name="index" value="0"/>

This variable can be referenced in the workflow as “{index}”
Lists, Ranges, Maps. We have also introduced additional data structures
that make the programming of advanced workflows easier. These features in-
clude lists, ranges, and maps or hash tables. We illustrate here only an example
for a range as it will come in handy for our definitions of loops. For more
information on these data types we refer to the manual [9].
<set name="range">

<range from="1" to="10"/>
</set>

Operators. We have defined a number of standard operators that help in
conditional statements. Such operators include math and boolean operators
such as sum, product, equal, not, and many more. An example on how a simple
math operator can be used is given below. It calculates the sum of 1,2, and 3.
<math:sum>

<argument value="1"/>
<argument value="2"/>
<argument value="3"/>

</math:sum>

6.3 Workflow Structural Elements

Many workflow systems are just based on the definition of direct acyclic graphs.
They do have properties such as lack of loops which makes it possible to con-
duct easy program verification. However in practice such systems fall short as
many Grid workflows require the generation of many repeated tasks as part of
for example parameter studies. Hence our workflow engine not only supports
hierarchical graphs, but also loops, conditions and even recursion.

Condition. The workflow language contains an if construct including elsif
blocks. The syntax is given by an if tag in which a conditional is included. The
statments to be executed are enclosed in then ore else tags.
<if><condition> ... </condition>

<then> ... </then>
<elsif><condition> ... </condition>

<then> ... </then>
</elsif>
<else> ... </else>

</if>

17

Choice. A choice will execute child elements in succession until one completes
without error. A choice has a transactional behavior and buffers its return
values. This allows us to more easily parallelize a choice as demonstrated in a
forthcoming section. Please note that in the sequential block all elements are
executed in sequential order.

<choice>
<sequential>

<print>You won’t see this as
we create an error. </print>

<generateError message="Error"/>
</sequential>
<sequential>

<print>You will see this</print>
</sequential>

</choice>

Loops. The definition of loops is straight forward and may include ranges and
conditions.
<for name="i" in="{range}">

...
</for>

6.4 Recursion

In some cases it is useful to be able to define a recursive element returning a
value. We show this feature in Figure 10. However, we would like to point
out that with a simplification of the syntax as discussed in Section 7 this code
becomes significantly simpler to understand. The example we have selected is
to define a recursive element that calculates a factorial. It is important to note
that within the definition of the element we can call the element tag to conduct
the recursion. The return value is specified in the number tag.

6.5 Parallelism

We have introduced elements to express sequential and parallel blocks of work-
flow statements. In a sequential block, all elements are executed in sequential
order while in a parallel block the statements are supposed to be executed in
paralllel.
<sequential> ... </sequential>
<parallel> ... </parallel>

Scope Variables are scoped based on their position within sequential and par-
allel blocks. The following example demonstrates that the value of the variable
is dependent on its scope.

<parallel>
<sequential>

<set name="a" value="2"/>
<echo>a is {a}</echo> <!-- 2 -->

</sequential>
<sequential>

<set name="a" value="3"/>

18

<echo>a is {a}</echo> <!-- 3 -->
</sequential>

</parallel>

<echo>a is {a}</echo> <!-- 1, no ambiguity -->

Parallel Loops. In case the order of execution does not matter, the loop can
be augmented with the argument mode that can than be set to parallel 1.
<for mode="parallel" name="i" in="{range}">

...
</for>

Parallel Choice. We have also implemented the feature of a parallel choice
that is specified through the mode argument2. The parallel choice can be of
importance when the execution of its individual element blocks will take a long
time to finish. Starting the executions in parallel and taking the one that finishes
first can increase the performance in exchange for possibly unused cycles. The
following code will start the first and the second block in parallel. It will return
this output generated by the second block and print “Second” as its execution
time is shorter.

<Choice mode="parallel">
<sequential>

<wait delay="100"/>
<print>First</print>

</sequential>
<sequential>

<wait delay="50"/>
<print>Second</print>

</sequential>
</parallelChoice>

Grid Tasks. We have introduced a number of elementary Grid tasks that we
have identified to be most useful to many in the Grid community. These tasks
are abstractions above the Grid middleware and allow easy adaptation towards
different versions and protocols of the underlying Grid middleware.

At this time we distinguish the tasks grid:execute that executes a program
on local or remote grid resources, grid:transfer that transfers files between re-
sources, and grid:authentication that authenticates to the grid.

In each case it is possible to define a provider that determines that protocol
and mechanism that is used to execute the appropriate Grid task. We have
developed providers for GT2, GT3, and GT4, as well as condor. It is possible
to include your own providers into the Java CoG Kit through our extensive
use of Java interfaces as part of our software engineering effort. The beauty
of our approach is that the developers do not have to deal with the internal
working of the Grid services. The only thing they need to know is which version

1At present we have not implemented the mode but instead we use the element tag paral-
lelFor

2At present we have not implemented the mode but instead we use the element tag paral-
lelChoice

19

of grid middleware they run on their Grids. The rest is provided by the Java
CoG Kit. This enables a significant simplification in the use of Grids as we not
only abstract above the Grid middleware but also enhance it by providing a
sophisticated workflow framework.

The following example illustrates the simplicity of our approach. The exam-
ple starts authenticates to a grid, copies a file to a remote machine, and compiles
that program on the remote machine.

<project name="RemoteCompilation">
<include file="cogkit.xml"/>
<task:authenticate provider="GSI"/>
<set name="host"

value="hot.mcs.anl.gov"/>
<set name="path"

value="/usr/local/j2sdk1.4.2_05"/>
<task:transfer desthost="{host}"

provider="gridftp"
srcfile="Test.java" />

<task:Execute host="{host}" provider="gt2"
executable="{path}/bin/javac"
arguments="Test.java"/>

</project>

6.6 Error Handling

Since many things can go wrong while computing on a Grid, dynamic error
handling is an important asset to any Grid workflow. We include the ability to
catch errors and react on them through the definition of an onError element.
The error element can be augmented with a match argument that specifies a
regular expression that when true allows to invoke the program block enclosed
in the onError element. Our example shows how to pop up a graphical user
interface for entering the credentials in case they have expired or they can not
be found.

<onError match="(._Expired credentials detected._)|
(._Proxy file._not found._)">

<echo>Invalid credentials detected.</echo>
<executeJava

mainClass="org.globus.cog.karajan.
util.ProxyInitWrapper"/>

<echo>Restarting failed element</echo>
<executeElement element="{element}"/>

</onError>

Checkpointing. We have added the ability to checkpoint our workflows by
assuming the availability of checkpointing within an element. If an element not
able to checkpoint, the workflow is rolled back to the position where the last
successful checkpoint is set. We also can add breakpoints into the workflow in
order to have more features for debugging or to allow interactive manipulation
of a running workflow.

20

6.7 Java and Python Language Support

We have already implemented the feature of executing arbitrary Java programs
as part of our workflow as demonstrated in the next image. This is achieved
by calling the underlying Java interpreter from the JRE. However, we have not
distributed this code yet with the Java CoG Kit as we need to verify licensing
restrictions.
<java>

System.out.println("Hello World");
</java>

In addition to being able to execute arbitrary Java Programs in a block of
statements, we are able to call Java methods within the workflow through the
executeJava Element. The example given starts up a Graphical user interface
for creating a Grid proxy.
<executeJava
mainClass="org.globus.cog.karajan.

util.ProxyInitWrapper"/>

Similar to Java tag, we intend to also support python programs with the
help of Jython.
<python> ... </python>

6.8 Performance Augmentations

We have implemented some simple mechanisms to support performance mea-
surements and to increase the performance through element caching.

Timers. In some cases it is important that the time taken for of particular
workflow operations is measured. This may be useful to help in determining if a
particular calculation is overdue in order to invoke a termination or a reschedul-
ing. Hence, we have introduced named times that can be queried.
<timer name="timer1"> ... </timer>

we can time a block and with
{timer1}

we can refer to its value as it is exposed as a variable to the workflow.

Element Result Caching. We have implemented the concept of element re-
sult caching into our framework. In case we have an element that returns a
result, this result is cached and can be reused at a later time without recalcu-
lating the element. This feature can be switched off by using the parameter
caching=”false”. This feature is most useful in case the results calculated occur
repeatedly in the workflow. The calculation of the factorial is a good example
for the use of element caching. Here the method signature can be used to store
the result and reuse it at a later time. This leads to significant performance
improvements.

21

7 Syntax Translators

We have designed our language based on XML so it is possible to verify the
inputs easily and to allow others to develop source-to-source code compilers or
translators that provide a more convenient form of specifying Grid workflows.
We also have designed a simplistic language that can be translated into our
XML specification and be executed by our workflow engine. Figures 10 and 11
contrast how simple an alternative syntax can be. In our simplistic language we
simply replace the beginning and end tags with operators that use beginning
and closing braces op(...) instead of < op > ... < /op >. The * indicates the
multiplication and the ? the if condition. It is feasable that other source-to-
source translators could be developed thus enabling other frameworks to make
use of our workflow engine. We envision that the community could develop
partial translators for subsets of Java, Python, or BEPL2WS to name just a
few.

8 Performance

We have conducted simple performance experiments and found that the perfor-
mance of the Java CoG Kit workflow engine is quite reasonable. On an Intel
Pentium 4 Mobile CPU with 1.60GHz and 512MB of memory, running Linux
2.6.11.5, we have achieved the following performance numbers. We have been
able to execute on average 14233 workflow elements per second. Internally, we
have handled on average 28490 events per second, with an average event time
of 29.5 µs. Hence, it will exceed by far the speed that is provided for executing
typical Grid tasks and will not cause a bottleneck.

9 Evaluation and Integration

In [1] we have demonstrated the usefulness of the workflow for nanomaterials ap-
plications. Based on our earlier experience with other scientific applications, we
are now in a position to start implementing solutions that address the workflow
management issues as depicted in Figure 1. We will proceed from top down
to illustrate how our workflow system can help. It is clear that our specific
definition of tasks within the Grid workflow management and the introduction
of definable tasks as part of workflow elements we can support the desire of
scientists to express processes or tasks. Because we introduced a module con-
cept and scoping, we can design components that can be stored in a component
repository that we are developing at present. As the Java CoG Kit workflow
is derived from GridAnt, it supports the build process and can assist in the
build management of software by integrating compilers on remote machines as
demonstrated in some of our examples within this chapter. Due to the ability to
integrate Java methods into the program and design new elements with return
values, we can also support access to Grid information services. Project and
knowledge management can also be supported, which is currently under devel-
opment as part of a chemistry application [19]. The integration of Grids in our
workflow system is of elementary importance. We have shown that we interface
with Grids on several levels and even deal with different versions. Along with

22

the features presented in the Java CoG Kit and the Globus toolkit, our workflow
system has the potential to integrate many management issues that are listed
in Figure 1. We hope to leverage from other efforts to also integrate support
for virtualization and information management. However, these efforts are still
ongoing research projects and are undergoing significant changes [7]. Hence we
have not yet addressed them as yet.

10 Conclusion

This chapter provides the first detailed write up about the Java CoG Kit work-
flow system. We have analyzed some essential concepts that are part of a Grid
workflow system. Based on this analysis and our experience with the Java CoG
Kit that won the best poster award at the last Supercomputing 2004 conference
we came to the conclusion that we needed to enhance our efforts in developing
an easy interface to the Grid that includes the ability to utilize workflows. In
contrast to some other efforts, our workflow system is open source and extensi-
ble. It allows the integration of commodity tools and frameworks through our
language bindings. We have made sure to project a future oriented architecture
that allows the gradual enhancement while addressing explicit problems with
today’s and tomorrows Grid middleware. Examples of such issues are presented
in the chapter and include the change of the deployed Grid middleware and
versions as part of a workflow instantiation of long running workflows. Our
abstractions have proven effective in changes against protocols and APIs of
well known Grid middleware. Other features that we support are the dynamic
adaptation of workflows at runtime which is based on our module concept.
Our integrated approach not only includes the availability of a sophisticated
language but also the development of more sophisticated tools that make the
manipulation and handling of the workflows more easy. Our future goal is to
develop additional tools that can either be exposed as stand-alone applications
or as part of a portal through portlets developed together with the Open Grid
Computing environments project [11].

11 Availability

The Java CoG Kit workflow can be downloaded from http://www.cogkit.org.

Acknowledgments

This work was supported by the Mathematical, Information, and Computa-
tional Science Division subprogram of the Office of Advanced Scientific Com-
puting Research, Office of Science, U.S. Department of Energy, under Contract
W-31-109-Eng-38. DARPA, DOE, and NSF support Globus Project research
and development. The Java CoG Kit is supported by DOE SciDAC and NSF
Alliance. We like to thank Deepti Kodeboyina for her help in improving the
presentation of this chapter[19].

References

[1] Kaizar Amin, Mihael Hategan, Gregor von Laszewski, Nestor J. Zaluzec, Shawn Hamp-
ton, and Al Rossi. GridAnt: A Client-Controllable Grid Workflow System. In

23

37th Hawai’i International Conference on System Science, Island of Hawaii, Big Is-
land, 5-8 January 2004. Available from: http://www.mcs.anl.gov/~gregor/papers/

vonLaszewski--gridant-hics.pdf.

[2] DAGMan (Directed Acyclic Graph Manager). Web Page. Available from: http://www.

cs.wisc.edu/condor/dagman/.

[3] Condor Version 6.4.7 Manual, 2003. Available from: http://www.cs.wisc.edu/condor/

manual/v6.4/2_11DAGMan_Applications.html.

[4] Ewa Deelman, James Blythe, Yolanda Gil, and Carl Kesselman. Pegasus: Planning
for Execution in Grids, 2002. Available from: http://www.isi.edu/~deelman/Pegasus/

pegasus%20overview.pdf.

[5] Ewa Deelman, James Blythe, Yolanda Gil, and Carl Kesselman. Grid Resource Man-
agement, chapter Workflow Management in GriPhyN. Kluwer, 2003. Available from:
http://www.isi.edu/~deelman/Pegasus/grm_chapter.pdf.

[6] J. Frey, T. Tannenbaum, I. Foster, et al. Condor-G: A Computation Management Agent
for Multi-Institutional Grids. Proceedings of the Tenth IEEE Symposium on High Per-
formance Distributed Computing (HPDC10), 2001.

[7] The Globus Project. Web Page. Available from: http://www.globus.org.

[8] HeNCE (Heterogeneous Network Computing Environment). Available from: http://

www.netlib.org/hence/.

[9] Java Commodity Grid (CoG) Kit. Web Page. Available from: http://www.cogkit.org.

[10] Kepler. Web Page. Available from: http://kepler.ecoinformatics.org/.

[11] Open Grid Computing Environments. Web Page. Available from: http://www.ogce.org.

[12] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization. Dover
Publications Inc., 1999.

[13] Pegasus. Web Page. Available from: http://pegasus.isi.edu/.

[14] Douglas Thain, Todd Tannenbaum, and Miron Livny. Condor and the Grid. In Fran
Berman, Geoffrey Fox, and Tony Hey, editors, Grid Computing: Making the Global
Infrastructure a Reality. John Wiley & Sons Inc., December 2002. Available from: http:
//media.wiley.com/product_data/excerpt/90/04708531/0470853190.pdf.

[15] Unicore. Web Page. Available from: http://www.unicore.de/.

[16] Unicore plus final report. Joint Project Report for the BMBF Project
UNICORE Plus, 2002. Available from: http://www.unicore.org/documents/

UNICOREPlus-Final-Report.pdf.

[17] Gregor von Laszewski. A Loosely Coupled Metacomputer: Cooperating Job
Submissions Across Multiple Supercomputing Sites. Concurrency, Experience,
and Practice, 11(5):933–948, December 1999. The initial version of this paper
was available in 1996. Available from: http://www.mcs.anl.gov/~gregor/papers/

vonLaszewski--CooperatingJobs.pdf.

[18] Gregor von Laszewski and Kaizar Amin. Grid Middleware, chapter Middleware for
Commnications, pages 109–130. Wiley, 2004. Available from: http://www.mcs.anl.gov/
~gregor/papers/vonLaszewski--grid-middleware.pdf.

[19] Gregor von Laszewski, Branko Ruscic, Kaizar Amin, Patrick Wagstrom, Sriram Krish-
nan, and Sandeep Nijsure. A Framework for Building Scientific Knowledge Grids Applied
to Thermochemical Tables. The International Journal of High Performance Computing
Applications, 17(4):431–447, Winter 2003. Available from: http://www.mcs.anl.gov/

~gregor/papers/vonLaszewski--knowledge-grid.pdf.

[20] Gregor von Laszewski and Patrick Wagstrom. Tools and Environments for Parallel and
Distributed Computing, chapter Gestalt of the Grid, pages 149–187. Parallel and Dis-
tributed Computing. Wiley, 2004. Available from: http://www.mcs.anl.gov/~gregor/

papers/vonLaszewski--gestalt.pdf.

24

http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--gridant-hics.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--gridant-hics.pdf
http://www.cs.wisc.edu/condor/dagman/
http://www.cs.wisc.edu/condor/dagman/
http://www.cs.wisc.edu/condor/manual/v6.4/2_11DAGMan_Applications.html
http://www.cs.wisc.edu/condor/manual/v6.4/2_11DAGMan_Applications.html
http://www.isi.edu/~deelman/Pegasus/pegasus%20overview.pdf
http://www.isi.edu/~deelman/Pegasus/pegasus%20overview.pdf
http://www.isi.edu/~deelman/Pegasus/grm_chapter.pdf
http://www.globus.org
http://www.netlib.org/hence/
http://www.netlib.org/hence/
http://www.cogkit.org
http://kepler.ecoinformatics.org/
http://www.ogce.org
http://pegasus.isi.edu/
http://media.wiley.com/product_data/excerpt/90/04708531/0470853190.pdf
http://media.wiley.com/product_data/excerpt/90/04708531/0470853190.pdf
http://www.unicore.de/
http://www.unicore.org/documents/UNICOREPlus-Final-Report.pdf
http://www.unicore.org/documents/UNICOREPlus-Final-Report.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--CooperatingJobs.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--CooperatingJobs.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--grid-middleware.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--grid-middleware.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--knowledge-grid.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--knowledge-grid.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--gestalt.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--gestalt.pdf

[21] The Workflow Reference Model. The Workflow Management Coalition, January 1995.
Available from: http://www.wfmc.org/standards/docs/tc003v11.pdf.

[22] Michael zur Muehlen. Workflow-based Process Controlling. Foundation, Design, and
Implementation of Workflow-driven Process Information Systems, volume 6 of Advances
in Information Systems and Management Science. Logos, Berlin, 2004. Available from:
http://www.workflow-research.de/Publications/Book/index.html.

25

http://www.wfmc.org/standards/docs/tc003v11.pdf
http://www.workflow-research.de/Publications/Book/index.html

Figure 7: The Java CoG Kit is planed to handle hierarchical graphs.

26

Figure 8: Parallel and sequential constructs simplify the definition of graphs.

27

Figure 9: The Java CoG Kit has a simple sequential debugger that allows the
stepwise debugging of the workflows.

<element name="factorial" arguments="n">
<if>

<condition>
<math:equals value1="{n}" value2="1"/>

</condition>
<then>

<number>1</number>
</then>
<else>

<math:product>
<variable>n</variable>
<factorial>

<math:sum>
<variable>n</variable>
<number>-1</number>

</math:sum>
</factorial>

</math:product>
</else>

</if>
</element>

Figure 10: This factorial specification demonstrates the ability to use recursion.

28

element(factorial, [n],
if(

?(<=(n, 1))
then(1)
else(

* (n, factorial(-(n, 1)))
)

)
)

Figure 11: The simplified Java CoG Kit workflow language allows the specifi-
cation of more complex code in a much more simple fashion.

29

	Introduction
	Workflow
	Issues in Grid Workflow
	Science Application Management
	Grid Application Management Issues
	Lifecycle Management

	Evolution of Grid Workflow
	Overview of Selected Grid Workflow Management Systems
	Condor DAGMan
	Globus Toolkit
	Pegasus and Chimera
	Unicore
	Triana
	SCIRUN

	Java CoG Kit Workflow
	Features
	Language
	Workflow Gridfaces

	Workflow Language
	Modularization
	Variables and Operators
	Workflow Structural Elements
	Recursion
	Parallelism
	Error Handling
	Java and Python Language Support
	Performance Augmentations

	Syntax Translators
	Performance
	Evaluation and Integration
	Conclusion
	Availability

